Cadmium stress mitigation in lemon balm (Melissa officinalis L.) using mycorrhiza symbiosis: Nutrient uptake, dry weight, and morphological traits

Document Type : Original Article

Authors

Department of Agronomy and Plant Breeding, Faculty of Agriculture, Yasouj University, Yasouj, Iran

Abstract

Mycorrhizal symbiosis is a sustainable way to empower plants to tolerate heavy metal stress, especially cadmium (Cd). Considering the medicinal importance of lemon balm, this study aimed to evaluate the effect of mycorrhizal fungi on lemon balm tolerance to Cd toxicity in the research greenhouse of the Faculty of Agriculture, Yasouj University, Iran, in 2022. The experiment was a factorial based on a completely randomized design with three replications. The first factor included Cd concentration (0, 5, 10, 15, 20 and 25, mg/kg soil, as Cd(NO3)2) and the second factor included no application and application of arbuscular mycorrhizal fungus, Funneliformis moseae. The results showed that 25 mg/kg soil Cd reduced the shoot nitrogen and potassium content by 64.2% and 45.3% and the root dry weight by 70% compared to the control. The mycorrhizal fungus also had a positive effect on the plant height (10%) and lateral branches (10.1%) compared to the non-application by reducing the root Cd content by 17.2%. The highest shoot dry weight were recorded from the unstressed + mycorrhizal application at 3.4 g/plant, which was lower than the maximum concentration of Cd + no mycorrhizal inoculation, showed a decrease of 79.7%. Also, at 25 mg Cd/kg soil, mycorrhiza improved the Cd tolerance index by 11.1%. Based on our results, although the dry matter yield of lemon balm was reduced by increasing the Cd concentration, the application of mycorrhiza fungi, especially at higher stress levels, partially prevented the adverse effects of stress on plant performance by reducing the Cd transfer factor from roots to shoots.

Keywords


Abadi, B. H. M., Ganjali, H. R. & Mobasser, H. R. (2015). Effect of mycorrhiza and phosphorus fertilizer on some characteristics of black cumin. Biological Forum-Research Trend. 7,1115-1120.
Abdul, W., Aini, S. I., Sharifah, N., Sarva, M. P. & Awang, S. (2014). The comparison of phytoremediation abilities of water Mimosa and water Hyacinth. ARPN Journal of Science and Technology. 4, 722 -731.
Adamczyk-Szabela, D., Lisowska, K., Romanowska-Duda, Z. & Wolf, W. M. (2019). Associated effects of Cd and copper alter the heavy metals uptake by Melissa officinalis. Molecules. 24(13), 24-58. DOI:10.3390/molecules24132458.
Aditi, B. & Neera, G. (2022). AMF species improve yielding potential of Cd stressed pigeonpea plants by modulating sucrose-starch metabolism, nutrients acquisition and soil microbial enzymatic activities. Plant Growth Regulation. 96(3), 409-430.‏ DOI:10.1007/s10725-021-00791-9
Akbar, S. (2020). Melissa officinalis L. (Lamiaceae) In Handbook of 200 Medicinal Plants. pp. 1177-1188.
Amirmoradi, S., Rezvani Moghaddam, P., Koocheki, A., Danesh, S. & Fotovat, A. (2017). Effect of Cd and lead on quantitative and essential oil traits of peppermint (Mentha piperita L.). Journal of Agroecology. 9, 142- 157.  DOI: 10.15835/nsb448185
Azizollahi, Z., Ghaderian, M. & Ghotbi-Ravandi, A, A. (2019). Cd accumulation and its effects on physiological and biochemical characters of summer savory (Satureja hortensis L.). International Journal of Phytoremediation. 21, 1241-1253. DOI:10.1080/15226514.2019.1619163
Begum, N., Qin, C., Ahanger, M. A., Raza, S., Khan, M. I., Ashraf, M., Ahmed, N. & Zhang, L. (2019). Role of Arbuscular Mycorrhizal Fungi in Plant Growth Regulation: Implications in Abiotic Stress Tolerance. Frontiers in Plant Science. 10, 1068. DOI:10.3389/fpls.2019.01068
Biermann, B. & Linderman, R.G. (1981). Quantifying vesicular-arbuscular mycorrhizae: A proposed method towards standardization. New Phytologist. 87, 63-67. DOI:10.1111/j.1469-8137.1981.tb01690.x
Brundrett, M. C. & Tedersoo, L. (2018). Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytologist. 220, 1108–1115. DOI:10.1111/nph.14976
40
Chang, Q., Diao, F. W., Wang, Q. F., Pan, L., Dang, Z. H. & Guo, W. (2018). Effects of arbuscular mycorrhizal symbiosis on growth, nutrient and metal uptake by maize seedlings (Zea mays L.) grown in soils spiked with Lanthanum and Cadmium. Environmental Pollution. 241, 607-615.‏ DOI: 10.1016/j.envpol.2018.06.003
Chapman, H. D. & Pratt, P. F. (1961). Methods of analysis for soils, plants and waters, University of California, Division of Agricultural Science.
Chrysargyris, A., Petropoulos, S. A. & Tzortzakis, N. (2022). Essential oil composition and bioactive properties of lemon balm aerial parts as affected by cropping system and irrigation regime. Agronomy. 12(3), 649.‏ DOI:10.3390/agronomy12030649
Darakeh, S. A. S. S., Weisany, W., Diyanat, M. & Ebrahimi, R. (2021). Bio-organic fertilizers induce biochemical changes and affect seed oil fatty acids composition in black cumin (Nigella sativa L.). Industrial Crops and Products. 164, 1-8. DOI:10.1016/j.indcrop.2021.113383
Dhalaria, R., Kumar, D., Kumar, H., Nepovimova, E., Kuča, K., Torequl Islam, M. & Verma, R. (2020). Arbuscular mycorrhizal fungi as potential agents in ameliorating heavy metal stress in plants. Agronomy. 10(6), 815.‏ DOI:10.3390/agronomy10060815
Fazli, A. & Madandoust, M. (2023). Improving growth and physiological indices of cumin (Cuminum Cuminum L.) by different growing substrates under stress heavy metals in the reproductive stage. Plant Process and Function. 12 (57), 369-384. DOI: 10.22034/12.57.369
Genchi, G., Sinicropi, M. S., Lauria, G., Carocci, A. & Catalano, A. (2020). The effects of Cd toxicity. International Journal of Environmental Research and Public Health. 17(11), 3782.‏ DOI:10.3390/ijerph17113782
Genthe, B., Kapwata, T., Le Roux, W., Chamier, J. & Wright, C. Y. (2018). The reach of human health risks associated with metals/metalloids in water and vegetables along a contaminated river catchment: South Africa and Mozambique. Chemosphere. 199, 1-9. DOI:10.1016/j.chemosphere.2018.01.160
Hajlaoui, H., Arraouadi, S., Noumi, E., Snoussi, M. & Kadri, A. (2021). Melissa officinalis L. essential oil: Chemical composition, antioxidant, antibacterial and antifungal activities-in vitrostudy. Journal of Pharmaceutical Research International. 33(60B): 1529-1537. DOI: 10.9734/JPRI/2021/v33i60B34775
Hasan, S. A., Fariduddin, Q., Ali, B., Hayat, S., & Ahmad, A. (2009). Cadmium: toxicity and tolerance in plants. Journal of Environmental
32
 Biology, 30(2), 165-174.‏
Hashem, A., Alqarawi, A. A., Radhakrishnan, R., Al-Arjani, A. B. F., Aldehaish, H. A., Egamberdieva, D. &  Abd_Allah, E. F. (2018). Arbuscular mycorrhizal fungi regulate the oxidative system, hormones and ionic equilibrium to trigger salt stress tolerance in Cucumis sativus L. Saudi Journal of Biological Sciences. 25(6), 1102-1114. DOI:10.1016/j.sjbs.2018.03.009
Irfan, M., Ahmad, A. & Hayat, SH. (2014). Effect of Cd on the growth and antioxidant enzymes in two varieties of Brassica juncea. Saudi Journal of Biological Sciences. 21 (2), 125-131. DOI:10.1016/j.sjbs.2013.08.001
Israel, A., Langrand, J., Fontaine, J. & Lounès-Hadj Sahraoui, A. (2022). Significance of arbuscular mycorrhizal fungi in mitigating abiotic environmental stress in medicinal and aromatic plants: a review. Foods, 11(17), 2591.‏ DOI:10.3390/foods11172591
Jan, R., Khan, M. A., Asaf, S., Lee, I. J. & Kim, K. M. (2019). Metal Resistant Endophytic Bacteria Reduces Cd, Nickel Toxicity and Enhances Expression of Metal Stress Related Genes with Improved Growth of Oryza Sativa, via Regulating Its Antioxidant Machinery and Endogenous Hormones. Plants. 8, 363. DOI:10.3390/plants8100363
Jiang, W., Xu, L., Liu, Y., Su, W., Yan, J. & Xu, D. (2022). Effect of Biochar on the Growth, Photosynthesis, Antioxidan System and Cd Content of Mentha piperita ‘Chocolate’ and Mentha spicata in Cd Contaiated Soil. Agronomy. 12, 2737. DOI:10.3390/agronomy12112737
Jolly, Y. N., Islam, A. & Akbar, S. (2013). Transfer of metals from soil to vegetables and possibie health risk assessment. Springer plus. 2, 385. DOI:10.1186/2193-1801-2-385
Jones, J. (2001). Laboratory Guide for Conducting Soil Tests and Plant Analysis. CRC Press, LLC. USA.
Khan, M. I. R., Iqbal, N., Masood, A., Mobin, M., Anjum, N. A. & Khan, N. A. (2016). Modulation and significance of nitrogen and sulfur metabolism in Cd challenged plants. Plant growth regulation. 78, 1-11.‏ DOI:10.1007/s10725-015-0071-9
Lamian, A., Badi, H. N., Mehrafarin, A. & Sahandi, M. S. (2017). Changes in essential oil and morpho-physiological traits of tarragon (Artemisia dracuncalus L.) in responses to arbuscular mycorrhizal fungus, AMF (Glomus intraradices NC Schenck & GS Sm.) inoculation under salinity. Acta agriculturae Slovenica, 109(2), 215-227.‏ DOI:10.14720/aas.2017.109.2.06
41
Lasat, M. M. (2002). Phytoextraction of toxic metals – A review of biological mechanism. Journal of Environmental Quality. 31, 109-120. DOI:10.2134/jeq2002.1090
Lenoir, I., Fontaine, J. & Sahraoui, A. L. H. (2016). Arbuscular mycorrhizal fungal responses to abiotic stresses: a review. Phytochemistry. 123, 4–15. DOI:10.1016/j.phytochem.2016.01.002
Li, X., Jing, R., Wang, L., Wu, N. & Guo, Z. (2023). Role of arbuscular mycorrhizal fungi in Cd tolerance in rice (Oryza sativa L): a meta-analysis. Quality Assurance and Safety of Crops & Foods. 15(2), 59-70.‏ DOI:10.15586/qas.v15i2.1182
Li, Y., Rahman, S. U., Qiu, Z., Shahzad, S. M., Nawaz, M. F., Huang, J. & Cheng, H. (2023). Toxic effects of Cd on the physiological and biochemical attributes of plants, and phytoremediation strategies: A review. Environmental Pollution. 325, 121433.‏ DOI:10.1016/j.envpol.2023.121433
Liu, L., Li, J., Yue, F., Yan, X., Wang, F., Bloszies, S. & Wang, Y. (2018). Effects of arbuscular mycorrhizal inoculation and biochar amendment on maize growth, Cd uptake and soil Cd speciation in Cd-contaminated soil. Chemosphere. 194, 495-503. DOI:10.1016/j.chemosphere.2017.12.025
Lux, A., Sottnikova, A., Opatrna, J. & Greger, M. (2004). Differences in structure of adventitious roots in Salix clones with contrasting characteristics of Cd accumulation and sensitivity. Physiologia Plantarum. 120, 537-545. DOI:10.1111/j.0031-9317.2004.0275.x
Makarov, M. I. (2019). The role of mycorrhiza in transformation of nitrogen compounds in soil and nitrogen nutrition of plants: a review. Eurasian Soil Science. 52, 193-205. DOI:10.1134/S1064229319020108
Miransari, M., Abrishamchi, A., Khoshbakht, K. & Niknam, V. (2014). Plant hormones as signals in arbuscular mycorrhizal symbiosis. Critical Reviews in Biotechnology. 34(2), 123-133. DOI:10.3109/07388551.2012.731684
Mousavi, N. & Razavizadeh, R. (2021). Evaluation of changes in phenolic compounds and secondary metabolites of calluses and seedlings of Mellissa officinalis L. under cadmium heavy metal stress. Plant Process and Function. 10 (41), 17-34. ‎
Mubeen, S., Ni, W., He, C. & Yang, Z. (2023). Agricultural strategies to reduce cadmium accumulation in crops for food safety. Agriculture, 13(2), 471.‏ DOI:10.3390/agriculture13020471
Muthukrishnan, G., Gopalasubramaniam, S. K. & Perumal, P. (2018). Prospects of arbuscular mycorrhizal fungi for heavy metal-polluted soil management. Microorganisms for Green Revolution. 2, 91-113. DOI:10.1007/978-981-10-7146-1_5
Nasiri, Y., Mousavizadeh, S. A. & Asadi, M. (2020). Effect of farmyard, biological and chemical fertilizers on yield, yield components and some morphological characteristics of wheat. Journal of Agricultural Science and Sustainable Production. 30, 313-328. DOI:20.1001.1.24764310.1399.30.1.19.0
Nourbakhsh Rezaei, S. R., Shabani, L., Rostami, M. & Abdoli, M. (2019). The effect of different concentrations of cadmium chloride on oxidative stress in shoot cultures of lemon balm. Plant Productions. 42(4), 509-522. DOI:10.22055/ppd.2019.24806.1567
Parvin, S., Reza, A., Das, S., Miah, M. M. U. & Karim, S. (2023). Potential Role and International Trade of Medicinal and Aromatic Plants in the World. European Journal of Agriculture and Food Sciences. 5(5), 89-99.‏ DOI:10.24018/ejfood.2023.5.5.701
Pishkar, L., Yousefi, S. & Iranbakhsh, A. (2022). Foliar application of Zinc oxide nanoparticles alleviates Cd toxicity in purslane by maintaining nutrients homeostasis and improving the activity of antioxidant enzymes and glyoxalase system. Ecotoxicology. 31(4), 667-678.‏ DOI:10.1007/s10646-022-02533-7
Rahman, S. U., Xuebin, Q., Kamran, M., Yasin, G., Cheng, H., Rehim, A. & Alyemeni, M. N. (2021). Silicon elevated Cd tolerance in wheat (Triticum aestivum L.) by endorsing nutrients uptake and antioxidative defense mechanisms in the leaves. Plant Physiology and Biochemistry. 166, 148-159.‏ DOI:10.1016/j.plaphy.2021.05.038
Rask, K. A., Johansen, J. L., Kjoller, R. & Ekelund, F. (2019). Differences in arbuscular mycorrhizal colonization influence Cd uptake in plants. Environmental and Experimental Botany. 162, 223-229. DOI:10.1016/j.envexpbot.2019.02.022
Rezaei, H., shahbazi, K., saadat, S. & Bazargan, K. (2022). Investigation of Soil Pollution and Agricultural Crops in Iran. Land Management Journal. 10(1), 61-93. DOI:10.22092/lmj.2021.125620.177
Rivero, J., Álvarez, D., Flors, V., Azcón-Aguilar, C. & Pozo, M. J. (2018). Root metabolic plasticity underlies functional diversity in mycorrhiza-enhanced stress tolerance in tomato. New Phytol. 220, 1322–1336 DOI:10.1111/nph.15295
Saito, K. & Ezawa, T. (2016). Phosphorus metabolism and transport in arbuscular mycorrhizal symbiosis. Molecular Mycorrhizal Symbiosis. 197-216. DOI:10.1002/9781118951446.ch12‏
Shahid, M., Dumat, C., Khalid, S., Niazi, N. K. & Antunes, P. M. C. (2017). Cd bioavailability, uptake, toxicity and detoxification in soilplant system. Reviews of Environmental Contamination and Toxicology. 241, 73–137. DOI:10.1007/398_2016_8
42
Sheikhzadeh, P., Zare, N. & Mahmoudi, F. (2021). The synergistic effects of hydro and hormone priming on seed germination, antioxidant activity and Cd tolerance in borage. Acta Botanica Croatica. 80(1), 18-28.‏ DOI:10.37427/botcro-2021-007
Shuhe, W., Yunmeng, L., Qixing, Z. & Siuwai, C. (2010). Effect of fertilizer amendments on phytoremediation of Cd-contaminated soil by a newly discovered hyper accumulator Selenium unigram L. Journal of Hazardous Materials. 176, 269-273.
Sieh, D., Watanabe, M., Devers, E. A., Brueckner, F., Hoefgen, R. & Krajinski, F. (2013). The arbuscular mycorrhizal symbiosis influences sulfur starvation responses of Medicago truncatula. New Phytologist. 197, 606-616. DOI:10.1111/nph.12034
Skoog, D. A. &  West, D. M. (1980). Fundamentals of Analytical Chemistry, 2nd Edition, Holt, Rinehart & Winston, New York.‏
Sun, S., Fan, X., Feng, Y., Wang, X., Gao, H. & Song, F. (2023). Arbuscular mycorrhizal fungi influence the uptake of Cd in industrial hemp (Cannabis sativa L.). Chemosphere. 330, 138728.‏ DOI:10.1016/j.chemosphere.2023.138728
Syed, M., Sadi, K. T. M., Uddin, R., Devnath, A. K. & Rahman, M. K. (2022). Integrated effects of vermicompost, npk fertilizers, Cd and lead on the growth, yield and mineral nutrient accumulation in spinach (Spinacia oleracea L.). Journal of Biodiversity Conservation and Bioresource Management. 8(2), 13-24. DOI:10.3329/jbcbm.v8i2.63814‏
Tang, J., He, M., Luo, Q., Adeel, M. & Jiao, F. (2020). Heavy Metals in Agricultural Soils from a Typical Mining City in China: Spatial Distribution, Source Apportionment, and Health Risk Assessment. Polish Journal of Environmental Studies, 29(2), 1379–1390. DOI:10.15244/pjoes/108517
Tarraf, W., Ruta, C., Tagarelli, A., De Cillis, F. & De Mastro, G. (2017). Influence of arbuscular mycorrhizae on plant growth, essential oil production and phosphorus uptake of Salvia officinalis L. Industrial Crops and Products, 102, 144-153.‏ DOI:10.1016/j.indcrop.2017.03.010
Timori, Z., Amirinejad, A. & Ghobadi, M. (2024). Ameliorating effects of sunflower residues-derived biochar on mitigating the adverse effects of Pb and Cd on mung bean. Iran Agricultural Research. 42(2), 65-73. DOI: 10.22099/iar.2024.49929.1584
Torfi, V., Danesh Shahraki, A., Ghobadinia, M. & Saeidi, K. (2023). Effect of water deficit stress and separate, dual and triple combined inoculation of some growth promoting bacteria on
 
agromorphological traits of Lemon balm. Environmental Stresses in Crop Sciences. 16(2), 487-500. DOI:10.22077/escs.2023.4769.2066
Vierheilig, H., Coughlan, A. P., Wyss, U. R. S. & Piché, Y. (1998). Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi. Applied and Environmental Microbiology. 64(12), 5004-5007.‏ DOI:10.1128/AEM.64.12.5004-5007.1998
Wang, P., Chen, H., Kopittke, P. M. & Zhao, F. J. (2019). Cd contamination in agricultural soils of China and the impact on food safety. Environmental Pollution. 249, 1038-1048. DOI:10.1016/j.envpol.2019.03.063
Westerman, R. L. (1990). Soil testing and plant analysis. Wisconsin: Soil Science Society of America.
Yamin, G., Tingting, A., Qiqiang, K., Yujie, W., Shuo, L., Liyan, L., Min, Y., A, M. & Yinglong, Chen. (2023). The role of arbuscular mycorrhizal fungi in the alleviation of Cd stress in cereals: A multilevel meta-analysis. Science of Total Environment. 902, 1-14. DOI:10.1016/j.scitotenv.2023.166091
Yurkov, A., Veselova, S., Jacobi, L., Stepanova, G., Yemelyanov, V., Kudoyarova, G. & Shishova, M. (2017). The effect of inoculation with arbuscular mycorrhizal fungus Rhizophagus irregularis on cytokinin content in a highly mycotrophic Medicago lupulina line under low phosphorus level in the soil. Plant, Soil and Environment. 63(11), 519-524. DOI: 10.17221/617/2017-PSE
Zhan, F., Li, B., Jiang, M., Yue, X., He, Y., Xia, Y. & Wang, Y. (2018). Arbuscular mycorrhizal fungi enhance antioxidant defense in the leaves and the retention of heavy metals in the roots of maize. Environmental Science and Pollution Research. 25, 24338-24347. DOI: 10.1007/s11356-018-2487-z
Zhao, Z., Chen, L. & Xiao, Y. (2021). The combined use of arbuscular mycorrhizal fungi, biochar and nitrogen fertilizer is most beneficial to cultivate Cichorium intybus L. in Cd-contaminated soil. Ecotoxicology and Environmental Safety. 217, 112154.‏ DOI:10.1016/j.ecoenv.2021.112154